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SHOCK PROFILES AND SELF-SIMILAR FLUID DYNAMIC LIMITS

Marshall Slemrod & Athanasios E. Tzavaras
Department of Mathematics

University of Wisconsin-Madison
Madison, WI 53706

§1. Introduction

Being among the simplest models in the kinetic theory of gases, the Broadwell model has served
as a paradigm to understand the phenomenon of relaxation and the transition from a microscopic

to a macroscopic description of gases. It consists of the system of semilinear hyperbolic equations

0fi 0 1

Sr+s2=:(8-1h)

of af: 1

3—: - 3—3:2 = ;(f:? - f1f2> (1.1)
0fs

5= —élz(fe? - fle) ,

and derives from a six-velocity model when specializing to one-dimensional flows, for which the
densities of particles moving in directions orthogonal to the flow are all equal. (We refer to
Broadwell [B] or to Platkowski and Illner [PI] for the derivation in the kinetic theory context).
The function f = (fi1, f2, f3) is defined for (z,t) € R x R* and describes densities of particles: f;
for particles moving in the positive z-direction, f; in the negative z-direction and f; in each of the
positive or negative y- or z-directions; as a consequence we confine to solutions with f; > 0. The
parameter € stands for the mean free path, a measure of the average distance between successive
collisions. The right hand side in (1.1) is called the collision operator and measures the rate of gain

(or loss) in densities of particles effected through collisions. It is characterized by the quantity

QN =f-hHt. (1.2)

The zeroes of Q(f) are the states of equilibrium for the system, f = f1f;, and are called
Maxwellians. Finally, associated with each f are the quantities py = f1 + fo +4f3, my = f1 — fa,
measuring the local density and momentum flux in the z—direction, respectively.

The limit when the mean free path approaches zero is known as the fluid dynamic limit. For

small mean free path the strong interactions of particles allow a macroscopic description of the

Typeset by Ap4S-TEX




2

flow to become meaningful. In the case of the Broadwell model the induced macroscopic ”Euler

equations” are easy to identify. First rewrite (1.1) in the form

‘(%(fl + fo4+4f)+ -;;(ﬁ - f2)=0,

D=+ g+ ) =0, (13)
%J;i = —Elg(fg - fif2)-

It is formally expected that as ¢ — 0 the first two equations remain unchanged while the third
causes the limit of f to be a local Maxwellian. If we denote by (Fi, F, F3) the limit of f, then
F3 = (FiF>)'/? and F = (F, F) satisfies the limiting fluid equations

0 0
—(Fl + K+ 4(F1F2)1/2) + ‘a—z(Fl -F)=0,

ot 5 A (1.4)
—(F — F; —(FA+F)=0.
at(Fl 2)+3x( 1+ F)
The corresponding macroscbpic density and momentum of the fluid are given by
p=F+4RR)Y*+F, m=pu=F-F. (1.5)

The algebraic system can be easily inverted and leads to an alternative form of the limit ”Euler

equations”, in terms of the macroscopic variables (p, u),

dp 0 _
E + E:'(pu) =0,

(1.6)
2 (o) + 5o =0,

where g(u) := %[2(1 + 3u?)1/? 1] . They form a strictly hyperbolic, genuinely nonlinear system
of conservation laws (Caflisch [C]).

The justification of the fluid dynamic limit has been the object of several investigations. We
refer to Cercignani [Ce] for a survey of the literature on the Boltzmann equation and to Platkowski
and Illner [PI] for results on discrete velocity models of kinetic theory. For the Broadwell model,
the fluid dynamic limit is understood for smooth solutions of the limit "Euler equations” (Inoue
and Nishida [NI}, Caflisch and Papanicolaou [CP]). Regarding the case of solutions with shocks, we
mention the studies on stability (in time) of traveling wave solutions (Kawashima and Matsumura

[KM]) or rarefaction wave solutions (Matsumura [M]) for the Broadwell model, and a recent study

" by Xin [X], showing that a given piecewise smooth solution with noninteracting shocks of the limit
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fluid equations can be approximated by solutions of the Broadwell system as ¢ — 0, that gives
a definitive answer to one direction of the problem. The converse problem, to show that a given
family of solutions to the Broadwell system converges globally in time to a fluid-dynamical solution,
remains at present open.

Insight in the latter direction is provided by the approach of self-similar fluid dynamic limits,
introduced in Slemrod and Tzavaras [ST] and further studied in Tzavaras [T] and Fan [F]. For

Riemann, Maxwellian data

+
sey={10 T 0 it =GR AR ) (1.7
Qf)=QUN =0, ff, f £ >0, (3)

admissible solutions of the limit fluid equations (1.4) are expected to be self-similar functions of
£ = z/t. On the other hand, the Broadwell system does not possess space-time dilational invariance
and does not admit self-similar solutions of that type. Motivated by an analogous idea for systems

of conservation laws (Dafermos [D]), one considers a modified Broadwell system

0 )

O )

o b -, - (19
o
L= (- hh),

which does preserve the invariance under dilations (z,t) — (az,at), @ > 0. The problem (1.7-1.8)
admits self-similar solutions of the form f = f(z/t), that are constructed by solving the singular

boundary value problem

—ef 4 fl = 1(f§ — i)
- B Ak, forfel-1]

—€fs = —“'(faz - fifa)
fCD) =7, f(+1) = f*

subject to data f* satisfying (M). There are three goals to be attained: (i) To construct solutions

(Pe)

f¢ of the problem (P,) for ¢ > 0 fixed. (ii) To show that as ¢ — 0+ the solutions f¢ converge
a.e to a local Maxwellian F solution of the Riemann problem (1.4, 1.7). (iii) To investigate the

structure induced on F' from emerging through self-similar fluid dynamic limits.




In this article we present a survey of applications of the method to the Broadwell model ([ST],
[T] and [F]) and comparisons with studies of shock profiles ([B], [C]). The hope is the approach
will be useful in studying relevant questions for other kinetic theory models or for hyperbolic
conservation laws with relaxation terms. The presence of relaxation mechanisms is natural in
many physical contexts and has been investigated extensively (e.g. Liu [L], Chen, Levermore and
Liu [CLL]), both in the realm of kinetic theories as well as for models that arise in various branches
of continuum physics. One objective is to obtain a quantitative understanding of the regularizing
effect induced on shocks by relaxation. In this direction, we mention the comparison of shock
profiles with traveling wave solutions of an associated system of viscous conservation laws arising
from (1.1) via the Chapman-Enskog expansion [C]. An important difference of the self-similar
relaxation investigated here is that it penalizes the whole wave fan simultaneously. Comparisons
between the structure entailed by self-similar limits and the Broadwell shock profiles are carried

out in the text.

§2. The limiting fluid equations

First certain properties of the limit fluid equations (1.4) for solutions F; > 0 are presented. These
properties are discussed in Caflisch [C]; we give an independent presentation for completeness and
to account for extended differences in notation. The characteristic speeds Ay (F), A2(F) are the

solutions of the binomial
(F1+F2+\/F1F2)/\,'2—(F1—-Fz)/\,'-—\/Fle =0; (2.1)

they are real and are given by the expressions

1 2
A12(F) = - F + F KhE) -4RF |, 2.2
1,2(F) SR+ F +JEE) [Fl B+ \/( 1+ B +2VRE) 1 2] (2.2)

where Ay corresponds to the minus sign and A; to the plus. One easily checks

n-F

=u< M(F 2.3
P+ R t4a/E :(F) - (23)

“1<M(F) <0< A(F)< 1, M(F) <

The corresponding right eigenvectors are given by

o A +1 -
T'—[/\;-—l]’ t1=1,2.
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Upon differentiating (2.1) we can express g—};-, '3‘?;' in terms of A;, and use the resulting relations

to compute

(2.4)

Vs ory = LX) ( (Fit+ By + 4VEFR) i - (F - F2)>
YT o/FE \(R+R+VAR)2M - (F~-F)
It follows from (2.2), (2.3) and (2.4) that V; -r; > 0 for 7 = 1, 2, and the system (1.4) is strictly

hyperbolic and genuinely nonlinear.
The shock curves for (1.4) are defined by solving the Rankine-Hugoniot conditions, expressed

as the equivalent algebraic system
—s(ug+2uz)+u =—s(wr +2w3 )+ wy
—s(up+2us)—up=—s(w2+2wz)— ws (2.5)
’U,32—'LL1’U,2 =’U)32—~'U)1’U)2 =0

for the states u = (u1,up,u3) and w = (wq, w2, w3) and the shock speed s. To this end fix one

state, say w, with w3 = ,/w;w; and consider the increments [u;] = u; — w;. Then
2sfua) = (1= 8)[w] = —(1 + 5) [up] (2.6)
[us] ([ua] + 2 wa) = [ua] [ua] + w2 [u] + wy [us] (2.7)
Substitution of (2.6) into (2.7) yields
o] [ (14 36 fua) 2 [+ + ) = (ar = )5 = wa] | =0

If [u3] = O there is no shock. Thus, using (2.1) and (2.6), we obtain a representa,tim'l of the shock

curve parametrized by the shock speed s in the form

[1&3] — 2('(1)1 +1’U-Jﬁ ;—8\2/101102) (8 _ Al(w)) (8 _ ’\Z(w)) ,

(2.8)

2s 2s
l_s[u3]’ [u2]~'—8+1

Given a triplet (u,w;s) satisfying (2.8) there are two associated shock solutions with speed s of

[w] = [a] -

(1.4) one with left state w and right state u and one with the states reversed.

§3. Shock profiles for the Broadwell system

The regularizing effect induced on shocks by relaxation can be understood by studying traveling

wave solutions for (1.1) (c.f. Broadwell [B], Caflisch [C]). If we introduce the ansatz

5 T — st z — st

5 = v( ); T= — vj(+o0) = fF (3.1)
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and look for a traveling wave connecting two end states f_ and fy, then v; satisfy the system of

differential equations

dv3

(~s+ DM _gw), 4+ =Qw), —sT2=-3Q0). (32)

After some simple manipulations, it turns out that v = (vy, v, v3) must satisfy the set of equations

25(v3(r) = f3) = (1= 8) () = f7) = =(L+ 8) (wa(T) = f), (3.3)
W (- ), (34)

that v(d00) must be Maxwellian states satisfying the Rankine-Hugoniot conditions (2.5), and thus
the jumps [f;] = fj+ — f; of the data are connected with the shock speed s through relations (2.8).

Equation (3.4) may be written in the form

dvs 1+ 352 _
ar 5;‘(1—“)(03 S5 ws = £, (3.5)

the solution of which is given by the explicit formula

+ o~ p- s
vs(r) = 13 ;f3 + 52 2f3 tanh (41(*'23 5 U - ~ ) (r =) (3.6)

where the constant 7y determines the shift of the shock profile. Then v;(7) and v;(7) are obtained
from (3.3).

The question arises which shock solutions of (1.4) have associated shock profiles. From (3.6), a
triplet (f*, f~; s) satisfying (2.8) admits a shock profile with f~ as left state and f* as right state
if and only if s(s? — 1)(fi — f57) > 0. It follows, upon using (2.8) to express [f3] (with w = f;
and with w = f) and (2.3), that the latter condition is equivalent to

M(ff)<s<M(f7) fors<O0,
A(fH)<s<A(f) fors>0.

(3.7)

These are the Lax shock conditions for (1.4).

84. Self-similar fluid dynamic limits

We turn now to our main objective the study of the system (P,) and its limits ¢ — 0. Regarding

the question of existence of solutions we have
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Theorem 1 (Slemrod and Tzavaras [ST], Fan [F]). For any f* satisfying (M) and ¢ > 0 the
boundary-value problem (P.) has a solution f° continuously differentiable in (—1,0) U (0,1) and
Holder continuous with exponent 0 < a. < 1 at the singular points £ = —1,0,+1. The reqularity

improves as € decreases and for € < &g the function f¢ is Lipshitz continuous on [~1,1].

The functions f° are extended to the whole real line by setting f¢ = f~ on (—o00,-1) and

f¢ = f* on (1,00). Regarding the self-similar fluid-dynamic limit we have

Theorem 2 (Slemrod and Tzavaras [ST]). Let {f}es0 be a family of extended solutions of (Pe)
corresponding to data f* subject to (M). Then:

(i) There are positive constants m;, M; and K;, j = 1,2,3, depending on the boundary data f*
but independent of ¢ such that

0<my<fHE)<M;, Eel-1,1] (4.1)
T‘/[—I,I] st S I(] (4.2)

(ii) There ezists a subsequence {f¢*} with €, — 0 and a positive, bounded function F of bounded

variation such that f°» — F pointwise on the reals. The function F satisfies

F3 = vV " F, fOY‘ a.e. E € [—'1,1] (43)

and the balance of mass and momentum equations

"fd%(Fx + F +4(FL )% + d%(Fl -FR)=0,
d d (44)
—EEE'(Fl - FR)+ EE(FI +FR)=0,

in the sense of measures.

Remarkably the problem of existence is more difficult than performing the ¢ — 0 limit. There
are two approaches to tackle the existence question. In [ST] a Fredholm alternative type of the-
ory for singular boundary value problems is developed. The theory has a wide range of potential
applicability, but at the final stage one must show that a certain linear but non-autonomous
boundary-value problem has no eigensolutions. As there are no general techniques for such ques-
tions this is a technical obstacle. For the Carleman model this method works for any Maxwellian

data, but for the Broadwell restrictions on f*, of technical nature, had to be imposed. These were

removed in [F], where the existence question is addressed by first desingularizing the system and
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then taking a dynamical systems point of view for the resulting boundary-value problem. Fan [F]
fixes f* and uses a shooting method to construct solutions on (—1,0) and (0, 1) separately, and
then shows that the traces of the constructed solutions at £ = 0 intersect transversally.

The uniform variation estimates are based on the following observation. The collision operator

Q(f¢) satisfies the differential equation

dQ(fE)_l fe f‘ Le_ £ _1 € £ |
= (T e = U (4.5)

The uniqueness theorem for differential equations implies that on each of the intervals (—1,0) and
(0,1) either Q(f¢) is identically zero or it never vanishes. (P.) in turn implies that the ff are
monotone or constant on the respective intervals, and (4.1), (4.2) follow by a case analysis and a
use of the balance of mass equation for the L* bounds. One also obtains the uniform estimate

/1 [g(fi)wrgc (4.6)

3

Helly’s theorem implies there exists a subsequence {f*»} and a function F' of bounded variation
so that fé» — F pointwise on R. Use of (4.1) and (4.6) shows that the components F; > 0 and F
is a local Maxwellian. Passing to the limit € — 0 in (P,), we deduce F' satisfies (4.4) in the sense
of measures.

For a function of bounded variation the right and left limits F({—), F(§+) exist at any £ and
its domain can be decomposed into two disjoint subsets : C the points of continuity of F, and §
the points of jump discontinuity of F', with S at most countable. The components F; inherit the

monotonicity properties of ff. On account of (4.6)

R(6) = (RO R©)?, ¢ec,

(4.7)
Fy(et) = (R(Ex) Bi(e1))'?, ces.
(4.4) implies that at any point £ € S the Rankine-Hugoniot conditions are satisfied
~([A+R+4VRR] [+ [A-R][I=0 “s)

—f([Fl—Fz]IEt)*l'[F1+F2]|§t=0

By construction ' = f_ on (—o0,—1] and F = f; on [1,00). The function (Fl(f),Fg (-’f)) is

easily seen to be a weak solution of the Riemann problem (1.4), (1.7).



85. Structure induced by fluid dynamic limits

In the previous section we outlined the construction of a solution to the Riemann problem (1.4),
(1.7) via self-similar fluid dynamic limits. In this section we discuss the structure of the resulting
limit, emphasizing the behavior at points of discontinuity. We outline the main ingredients of the
technique and refer to Tzavaras [T] for details of the presentation. A

First, the appropriate framework for passing to the ¢ — 0 limit in (P.) is that of measures.

Consider the functions

3 €
() = /_ ) QA 4r (5.1)

and note that ®° takes constant values outside [—1,1]. The sequence {®°} is of uniformly bounded
variation on IR. Helly’s selection principle implies there exists a subsequence, denoted again by
{®¢}, and a function of bounded variation ® such that & — @ pointwise on R. In turn, Helly’s

convergence theorem implies

<v5,go>:=/<p%fe)d£=/gad¢>‘ - /tpdq) =<V, 0> (5.2)

for any ¢ € C.(IR), continuous function with compact support. By the Riesz representation
theorem v°, v may be viewed as finite (signed) Borel-Stieltjes measures, both supported on [—1, 1],
v® is generated by ®° and v is generated by @, the right continuous version of ® defined by
®(z) = ®(z+). Equation (5.2) states that ¥° — v in the weak-x topology of measures. It allows
to pass to the limit ¢ — 0 in (P,) and obtain, for any test function ¢ € C}(IR),

/F1 (¢~ 1)<p)'d£ =< v, >
[R(E+De) d=<ne> (5.3)
[REoe  =-3<une>

with F3 = /F{ F;. It is suggested by (5.3) and can be justified by an analysis near the singular
points that supp v is precisely the set of points where f is not a constant state. Equation (5.3)
implies the weak form (4.4), but carries additional information if further properties of v are known.

The second ingredient is a representation formula for Q(f¢)/e. Using (4.5) and (P,) it is shown
in [T] that

Q(f°) _ { (fi(0) - fi)ne on (-1,0) (5.4)

e L5000~ £ mg on (0,1)
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where uf , uS are given by

14°(8) 18 ce(s)d
b () = f gl ‘ __ fXP{ f:_i (s)ds} fe(-10), (5.5)
I e’ ©d¢ [, =7 exp{z [ c(s)ds}d¢
1g°8) L ¢ ce(s)d
W6 = s = fxp{ fl + () ds} £€(0,1), (5.6)
Jo aressQdl [y g exp{s [;, e(s)ds}d(

and a_, ay are any fixed points with —1 < a_ < 0 < a4 < 1. Note that because of their form
(along subsequences) p§ — p4 and pé — p_ weak-x in measures. We deduce from (5.2) and (5.4)
that v arises as a limit of probability measures and supp v C supp p— U supp f+.

Remarkably, the function ¢® in (5.5 — 5.6) and (4.5) is connected to the wave speeds of the

hyperbolic system (1.4), as it can be expressed in the form

1

¢ = —(—1—_—22—)—6 (ff +f; + f:f) (f - )‘l(fe)) (E . ’\2(f£)) ’ (5.7)
where Aq o(f) are given by
Malh) = gy [~ o £ VR F R RP A5 58)

A comparison of (5.8) and (2.2) shows that A;2(f) coincide with the wave speeds A 2(F) along

Maxwellian states. Hence, along the convergent sequence f¢ — F,

(B + By + F3) (€ = M(F)) (€ - Aa(F)) (5.9)

cc— ¢ =

o1
(1-€)¢
pointwise on (—1,0) U (0,1).
Use of the above ingredients, together with an analysis of the behavior near the singular points,

gives ([T], Lemma 4.3, Proposition 4.4)
Proposition 3 . There are constants A4, Aoy with —1 < Aj— < A1 < 0 < Ado_ < Ay < 1 such
that suppv C (supp pi— U supp ) C [M=, A4 U [A2—, As4]. Moreover
(i) If &€ € supp py then f§+ c(s)ds < f§+ c(s)ds for any ¢ € (0,1)
(i) If &€ € supp p_ then ftf_ c(s)ds < f:_ c(s)ds for any ¢ € (-1,0).
The maximization properties (i) and (ii) capture the effect induced on shocks by self-similar

fluid dynamic limits. To illustrate, fix £ < 0, £ € S. Then £ € supp p—, the function g achieves its
global maximum in (—-1,0) at £ and thus ¢(é+) < 0, ¢(é-) > 0. Using (5.9) and (2.3) we deduce
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M(F(E4)) < € < M(F(€-)), a weak form of the Lax shock conditions. In fact the complete
behavior of F can de characterized and the final result is stated in the first part of Theorem 4.
The last topic is to discuss the relation between self-similar limits and shock profiles. Let £ € S
a point of discontinuity for F, and note that F(£—) # F(§+) are Maxwellian states satisfying (4.8).
Given a sequence of points {£.} with £, — £, estimates (4.1 —4.2) imply the functions {vf} defined
by v§(¢) = ff(é + €() are of uniformly bounded variation in the new variable —o0o < ¢ < oo.
This accounts for a shift of the shock in the original solution and the introduction of the stretched
variable (. Helly’s theorem and a diagonal argument in turn imply the existence of a subsequence

and a function v = (v, v2,v3) such that
i€+ €¢) — v;(C) pointwise for — o0 < ( < o0. (5.10)

Then v; are solutions of the traveling wave equations (3.2) (c.f. second part of Theorem 4).

Theorem 4 (Tzavaras [T]). The limiting function F' constructed in Theorem 3 has the behavior:
F stays constant on each connected component of R — supp v. Also there ezist disjoint closed sets

I, , with each I, associated with the k-th characteristic speed, such that supp v = I, U I, and
(i) either I, is empty, or

(ii) In, contains a single point in S, in which case F is a shock wave on I\, satisfying (4.8) and

the Laz shock conditions, or
(iii) Iy, is a full interval of points in C, in which case F is a k-rarefaction wave on I,.

Given a point of discontinuity £ € S, there ezists a choice of the sequence {€.} such that v({) in

(5.10) is a (smooth) solution of (3.2) that satisfies (EIBOO v(¢) = F(¢-), (li_’m v(¢) = F(£+).

We remark that the proof is of purely analytical nature. Geometric properties such as the
genuine nonlinearity of (1.4) and the form of the shock curves (2.8) are only used in the last step

to exclude contact discontinuities and simplify the emerging structure of F.
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